Problem Description:
You are given a number of case-sensitive strings of alphabetic characters, find the largest string X, such that either X, or its inverse can be found as a substring of any of the given strings.
Input:
The first line of the input file contains a single integer t (1 <= t <= 10), the number of test cases, followed by the input data for each test case. The first line of each test case contains a single integer n (1 <= n <= 100), the number of given strings, followed by n lines, each representing one string of minimum length 1 and maximum length 100. There is no extra white space before and after a string.
Output:
There should be one line per test case containing the length of the largest string found.
Sample Input:
2
3
ABCD
BCDFF
BRCD
2
rose
orchid
Sample Output:
2
2
题意:n个字符串,找出这n个字符串中连续相同的最大子序列,子串的逆序也可以。
#include#include const int N=110;char str[N][N], resouce[N];int n;void Init() ///在输入数据时找到最短的那条字符串,只有这样才能保证找到的子串有可能是公共子串{ int i; scanf("%d", &n); scanf("%s", str[0]); strcpy(resouce, str[0]); for (i = 1; i < n; i++) { scanf("%s", str[i]); if (strlen(str[i]) < strlen(resouce)) strcpy(resouce, str[i]); }}int Judge(char sub[], char resub[]) ///判断找到的子串和其逆序是否是其它字符串的子串{ int i; for (i = 0; i < n; i++) { if (strstr(str[i], sub) == NULL && strstr(str[i], resub) == NULL) return 0; ///只要在一个字符串中没有找到该子串和其逆序,则该子串不是公共子序列 } return 1;}int Sub(){ int i, j, len1 = strlen(resouce), k, t; char sub[N], resub[N]; for (i = len1; i >= 1; i--) { for (j = 0; i+j <= len1; j++) ///从最长的子串查找,只要找到了属于所有字符串的子串,最长公共子序列就是该子串,便可停止查找 { memset(sub, 0, sizeof(sub)); ///最短字符串的子串 memset(resub, 0, sizeof(resub)); ///子串的逆序 k = 0; strncpy(sub, resouce+j, i); for (t = strlen(sub)-1; t >= 0; t--) resub[k++] = sub[t]; resub[k] = '\0'; if (Judge(sub, resub)) return strlen(sub); } } return 0;}int main (){ int T, len; scanf("%d", &T); while(T--) { memset(resouce, 0, sizeof(resouce)); Init(); len = Sub(); printf("%d\n", len); } return 0;}